

WHY DO FUTURE E/E ARCHITECTURES REQUIRE MACSEC?

Dr. Lars Völker, Technical Fellow

4th Automotive E/E Architecture Technology Innovation Conference

Dec. 14th /15th 2021

Chapter 01. Motivation.

E/E Architecture Trends. Technology.

E/E ARCHITECTURE TRENDS...

Trend 1: "Expecting always fresh":

Software updates expected, like on smartphones. Faster time to market required to stay competitive.

Trend 2: "More in-vehicle communication":

In-vehicle data volume increases. Multi-gigabit is the next backbone.

Trend 3: "Security is required":

Attackers are more focused on vehicles. Regulation and type approval are getting serious.

... REQUIRE STRATEGIC THINKING!

Solution: A secure, scalable high-performance communication platform: Create a scalable, secure platform to deploy features faster. Convergence and standards give you freedom to deploy more innovations. Solid standard technology improves time to market and quality. Scalable technology means future-proof.

Best in class technology: Ethernet and MACsec.

WHY AUTOMOTIVE ETHERNET?

Ethernet is a strong technology base:

Ethernet delivers for 40+ years increasing speeds and innovations. Ethernet dominates most markets for good reasons.

Automotive Ethernet is the in-vehicle communication platform:

Automotive Ethernet is the only technology with forward compatibility. Automotive Ethernet allows convergence like no other technology. Automotive Ethernet has a solid, competitive multi-vendor market. Automotive Ethernet delivers the best-in-class feature portfolio.

Automotive Ethernet is adopted by most OEMs already.

WHY MACSEC?

Coverage, Coverage, Coverage:

MACsec can secure unicast, multicast, and broadcast communication. MACsec can protect almost all packets transported (layer 2 and up). MACsec secures the communication of upcoming features today.

Fast and easy to use:

MACsec is currently the only available security solution for high-speed.MACsec scales with high speed and increasing number of Ethernet nodes.MACsec is based on the Ethernet interface – a perfect abstraction for ECUs.

Leading premium OEMs are already working on MACsec for their next architecture.

Chapter 02. MACsec.

How does MACsec work? How does MKA work? How to integrate MACsec? How fast does MACsec start?

HOW DOES MACSEC WORK?

MACsec:

"Authentication only" or "Encryption + Authentication". Hop-by-hop mode supported for link-based protection. Security Tag including Integrity Check Value (ICV). Based on Secure Association Key (SAK). Typically: GCM-AES-128 or GCM-AES-256. Optional: Extended Packet Number (XPN).

| Time Source Destination Protocol |Length |Info 1 0.000000 dc:a6:32:00:00:01 ff:ff:ff:ff:ff:ff ARP 76 Who has 169.254.95.161? (ARP Probe Frame 1: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) Ethernet II, Src: dc:a6:32:00:00:01, Dst: ff:ff:ff:ff:ff:ff 802.1AE Security tag > 0010 00.. = TCI: 0x08, VER: 0x0, SC Short length: 33 Packet number: 119 System Identifier: dc:a6:32:00:00:01 Port Identifier: 1 Ethertype: 0x0806 Padding: 0000 ICV: e4cfd6cbd028374e1594b390a64b8db7 Address Resolution Protocol (ARP Probe) ff ff ff ff ff ff dc a6 32 00 00 01 88 e5 20 21 · · · w · · 2 · dc a6 32 00 00 00 00 00 a9 fe 5f a1 00 00 e4 cf d6 cb (7N···· d0 28 37 4e 15 94 b3 90 a6 4b 8d b7

But where to get the SAK from?

HOW DOES MKA WORK?

MACsec Key Agreement (MKA):

MKA allows to generate fresh SAKs for MACsec.

- based on pre-shared Connectivity Association Key (CAK). a)
- based on EAP generated CAK (e.g., based on EAP-TLS). b)

Key Server is elected, and Key Server distributes encrypted SAK.

MKA generates additional keys out of CAK:

ICV Key (ICK): MKA message integrity protection.

Key Encryption Key (KEK): encryption of keys in MKA messages.

Recommendation: Use pre-shared CAKs for fastest startup.

HOW TO INTEGRATE MACSEC?

Option "MACsec in the Ethernet PHY": Available now. Access to MII traces may be critical for high security use cases.

Option "MACsec in the Ethernet MAC": Best solution for ease and security. Long adoption time for all µC/SoCs.

Option "MACsec in Software":

Cost effective solution with hardware crypto. Performance of hardware crypto very critical. Lower speed grades only.

HOW FAST DOES MACSEC START?

Raspberry Pi: Regular MACsec Key Agreement (MKA) up to 8s (here 3s):

No.	Time	Time Delta	Source	Destination	Protocol	Length	Info	
:	0.00000000	0.00000000	aa:ea:c4:e5:42:cc	01:80:c2:00:00:03	B EAPOL-MKA		98 Key Server	
2	0.986986779	0.986986779	ce:e9:55:df:c2:5e	01:80:c2:00:00:03	B EAPOL-MKA		98 Key Server	
3	3 2.001422945	1.014436166	aa:ea:c4:e5:42:cc	01:80:c2:00:00:03	B EAPOL-MKA		118 Key Server,	Potential Peer List
4	2.988365546	0.986942601	ce:e9:55:df:c2:5e	01:80:c2:00:00:03	B EAPOL-MKA		150 Key Server,	Live Peer List, Distributed SAK
5	5 2 . 995237588	0.006872042	ce:e9:55:df:c2:5e	01:80:c2:00:00:03	B EAPOL-MKA		194 Key Server,	Live Peer List, MACsec SAK Use, Distributed SAK
6	6 2 . 995736763	0.000499175	aa:ea:c4:e5:42:cc	01:80:c2:00:00:03	B EAPOL-MKA		162 Live Peer Li	st, MACsec SAK Use
7	2.996580117	0.000843354	aa:ea:c4:e5:42:cc	01:80:c2:00:00:03	B EAPOL-MKA		162 Live Peer Li	st, MACsec SAK Use

Raspberry Pi: Extensive tuning work <30ms but sometimes much longer:

No.	Time	Time Delta	Source	Destination	Protocol	Length	Info
1	0.00000000	0.000000000	52:54:00:5c:f9:b1	01:80:c2:00:00:03	EAPOL-MKA	82	Key Server
2	0.006542060	0.006542060	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	82	
3	0.006907319	0.000365259	52:54:00:5c:f9:b1	01:80:c2:00:00:03	EAPOL-MKA	102	Key Server, Potential Peer List
4	0.009524439	0.002617120	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	102	Potential Peer List
5	0.010436494	0.000912055	52:54:00:5c:f9:b1	01:80:c2:00:00:03	EAPOL-MKA	134	Key Server, Live Peer List, Distributed SAK
6	0.011732499	0.001296005	52:54:00:5c:f9:b1	01:80:c2:00:00:03	EAPOL-MKA	178	Key Server, Live Peer List, MACsec SAK Use, Distributed SAK
7	0.017284492	2 0.005551993	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	146	Live Peer List, MACsec SAK Use
8	0.023570478	3 0 . 006285986	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	146	Live Peer List, MACsec SAK Use
9	0.025617745	0.00 2047267	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	146	Live Peer List, MACsec SAK Use

Automotive Hardware: Technica Automotive MKA implementation:

* demo time *

Chapter 03. Additional Aspects.

Complementary Solutions Testing and Integration

ADDITIONS.

Important complementary solutions

Address Filtering on Switches

Since switch ports are authenticated, strong address and VLAN filtering (layer 2 and 3) is possible and highly recommended. This stops address spoofing and unauthorized VLAN access.

O Access Control Lists (ACLs) on ECUs

Without address spoofing, access control can be based on addresses.

For example, SOME/IP ACLs or regular packet filters in ECUs.

---> SecOC or similar for selected communication

Legacy to Ethernet, Secure Element to Application, etc. Highly critical use cases (e.g., vehicle immobilizer).

TESTING AND INTEGRATION.

Aspect 1: "Prototypes / A-samples": Proof that MACsec fits your requirements!

Aspect 2: "Testing MACsec":

Test cases and test suites for MKA. Test cases and test suites for MACsec. Hardware tools to enable MACsec testing.

Aspect 3: "Trace analysis vs. MACsec": Solution: "Authentication only MACsec". Hardware tools to record communication. Wireshark support since Wireshark 3.4.

Chapter 04. Summary.

SUMMARY. WHY DO FUTURE E/E ARCHITECTURES REQUIRE MACSEC?

Automotive Ethernet and MACsec are the future:

- Ethernet allows the best communication platform for convergence and extensibility.
- MACsec can easily protect Ethernet communication and allows for secure platform.
- Ethernet + MACsec are great foundations for future E/E architectures.
- Bring up of MACsec can be engineered to be secure, fast, and robust.
- Automotive MACsec requires optimized MKA!
 - Find details of automotive MKA and more here: https://automotive-macsec.com
- Also important: Consulting, prototyping, testing, and tooling.

Sigent思佳

Shiqiu Chen

CEO shiqiu.chen@sigent.cn +86-1381-002-6761

Sigent Technology ICP No. 299, Changping Road, Shahe Town Changping District, Beijing

https://www.sigent.cn

Dr. Lars Völker

Technical Fellow Lars.Voelker@technica-engineering.de +49-175-1140982

Technica Engineering GmbH Leopoldstraße 236 80807 Munich Germany

https://www.linkedin.com/in/lars-voelker/

Local partner of Technica Engineering.