COMPARING AUTOMOTIVE NETWORK SECURITY FOR DIFFERENT COMMUNICATION TECHNOLOGIES.

AUTOMOTIVE ETHERNET CONGRESS 2018.

Dr. Lars Völker. 2018-01-31.

MOTIVATION.

IS THERE A DIFFERENCE IN THE LEVEL OF SECURITY THAT DIFFERENT COMMUNICATION TECHNOLOGIES CAN ACHIEVE?

Disclaimer: I will focus on protecting in-vehicle communication.

INTRODUCTION.

CLASSIC BUS SYSTEMS VS ETHERNET AND IP-BASED SYSTEMS.

	CAN/FR/CAN-FD/		Ethernet and IP									
Layer 5-7	XCP DLT UDS "Signals" NM		IEEE 1722	IEEE 802.1AS	ХСР	DLT UDS DoIP SC	OME/IP	SOME/IP-SD UDP-NM	DHCP			
Layer 4	Different TPs (for some messages)			(gPTP) /	ТСР	TCP and/or UDF	P	UDP			ARP	
Layer 3				PTPv2			IPv4	4				
Layer 2	CAN/FR/CAN-FD			IEEE Ethernet MAC + VLAN (802.1Q) + AVB (802.1Qav)								
Layer 1	CAN/FR/CAN-FD		Automotive Ethernet Physical Layer (e.g. OABR/100Base-T1, APIX2, 1000Base-T1)									
			IT Standard Automotive Automotive, only in development BMW Group, Dr. Lars Völker, 2011-2018									

Selected additional differences:

- Ethernet is a network and therefore scales over different speeds, which can be mixed and matched.
- Ethernet allows with line speed multiport bridges (Switches) with various features (e.g. frame filtering).
- Ethernet allows line speed virtualization via IEEE 802.1Q VLANs.
- IP allows global connectivity and routing.
- Ethernet and IP are used everywhere and have an extremely well supported eco system.

PROBLEMS, PROPERTIES, AND CRITERIA.

- Separation and Isolation.
- Bandwidth, Message size, and Overhead.
- Key Exchange and Startup.
- Multicast and Broadcast Communication.
- Placement of Security within the Stack.

SLICING THE ELEPHANT. NETWORK ARCHITECTURE FOR SEPARATION OF DOMAINS.

- In-vehicle communications, different domains meet: Backend Connectivity, Infotainment, Autonomous Driving, ...
 - In security design you try to separate different parts to reduce attack surfaces, e.g. by separating vehicle domains.
- Separation on CAN/FR/CAN-FD:
 - Increasing the number of busses (e.g. 10 CANs, 2 CAN-FDs, 1 FR) + use gateways.
 - The <u>theoretical optimum</u>: Multiple gateways + minimum number of devices per bus (2).
 - This basically means you emulate a point-to-point system.
 - This allows to filter on gateways.
- Ethernet:
 - The network topology and the placement of Ethernet Switches is critical.
 - VLANs and line-speed filtering helps a lot.
- Authentication of traffic can somewhat achieve the separation as well.

Comparing Automotive Network Security for Different Communication Technologies | 2018-01-31

BANDWIDTH, MESSAGE SIZE, AND OVERHEAD. DO THEY MATTER FOR MESSAGE AUTHENTICATION?

- Standardized state-of-the-art security solutions protect communications by adding to the messages:
 - 12-16 Bytes for the Integrity Check Value (ICV).
 - 6 Bytes for the Initialization Vector (IV)/Freshness.
- Ethernet:
 - Easy, you have 1500 Byte packets. If you are smart, you leave room for security by using a less than 1500 bytes.
- CAN-FD:
 - Shortening of ICV reduces security you want to avoid this. Too short and brute force attacks are feasible. 😕
 - Shortening of Freshness to 1-2 Bytes? Basically possible since CAN-FD is rather slow.
 - Overhead of 16 Bytes would mean 25% of a 64 Bytes CAN-FD payload is already used!
- Classical CAN:
 - Need to shorten the ICV (reduced security) or using TP (possibly reducing robustness).

KEY EXCHANGE. STARTING UP IS DIFFICULT.

- For high security, you want to protect the traffic with short term symmetric keys.
 - Those are exchanged via long-term asymmetric keys.
- Challenges:
 - Additionally messages at startup needed the slower your bus, the longer it takes.
 - $-% \left({{\rm{The}}} \right) = {\rm{The}} \left({{\rm{The}}} \right) = {\rm{The}} \left({{\rm{The}}} \right)$ and the more to exchange.
 - Key Exchange is challenging (see SSL/TLS bugs). A well understood solution is best.
- What does that mean?
 - For CAN, FR, CAN-FD: use static keys or build something yourself.
 - For Ethernet and IP-based: state-of-the-art solutions exist.

PROTECTING MULTICAST COMMUNICATION AND GROUP KEYS.

- How to protect the Multicast traffic on Ethernet and CAN? Broadcast?
- For performance reasons symmetric algorithms are used to protect messages (e.g. AES).
- For group communication, we need group keys:
 - Problem 1: Distribution of group keys is not a trivial problem.
 - Problem 2: Trust in group keys is rather difficult ("receiver" can impersonate sender).

– Solutions:

- Avoid Problem 1+2 by protecting link-based (MACsec).
- Use static symmetric keys to avoid Problem 1 (generic, e.g. SecOC).
- Use key master to distribute keys on startup (reduced security and performance!)
- Use special crypto hardware to reduce Problem 2.
- Use a lot of keys (and more hardware) to reduce Problem 2.

ON WHICH LAYER DO YOU PROTECT YOUR COMMUNICATION?

- Network Security can be implemented on different layers:
 - Application-based solutions can supply very specific security. E.g. different key for different SOME/IP message.
 - The higher, the more differentiated the solution can process packets.
 - Better against internal attackers, when used for separation/isolation.
 - Security solutions on lower layers can protect more messages with less associations and cover "helper" protocols like ICMP.
 - The lower, the more traffic is covered.
 - Better against external attackers.
- For maximum Network Security combine:
 - Network Security on low layer to make it hard for external attacker.
 - Solution to increase strong separation for needed use cases to make it hardware for internal attacks.
- For CAN/FR/CAN-FD the number of options is very limited due to the simple communications stack.

COMPARISON AND CONCLUSION

COMPARISON

		Auth? Enc?	Multicast Broadcast	100% protected?	# of keys?	Dyn. Keys?	Minimum Overhead	Selector	Implementation	Config Complexity	
E t	MACsec	Yes/Yes	Yes	Yes	Lowest	Yes	~2%	L1/L2	State-of-the-art Hardware + Software	Low	
h e	IPsec	Yes/Yes	No	No	Low	Yes	~2%	L3 + L4	State-of-the-art Software	Low-Medium	
n e	(D)TLS	Yes/Yes	No	No	Medium	Yes	~2%	L4 only	State-of-the-art Software	Low-Medium	
t	SecOC Eth	Yes/*1	somewhat possible	No	High	*2	~2%	Depends	New Software + *4	High	
C A	SecOC CAN	Yes/*1	somewhat possible	somewhat possible	High	*2	~100% *3 *5	ID	New Software + *4	High	
N 	SecOC CAN-FD FR	Yes/*1	somewhat possible	somewhat possible	High	*2	~25% (CAN-FD)	ID	New Software + *4	High	

*1 Possible to integrate in standard

*2 No standardized solution exists.

*3 Only reduced security.

*4 Additional new Hardware might be needed to reduce group key trust limitations.*5 Avoiding TP due to Safety reasons.

CONCLUSION

Communication Technologies:

- Ethernet supports a wide-range of security solutions, most of them designed for the Internet.
- For Ethernet MACsec allows to protect all packets.
- Classic CAN is very limited on Network Security due to low bandwidth and message size.
- CAN-FD as migration technology allows to increase the Network Security somewhat. Achieving a similar level of Security as Ethernet will be expensive and very hard to achieve.

Use Cases:

- New use cases and applications requiring higher Security.

For use cases and applications with higher security needs, Ethernet is the better alternative:

- \rightarrow Lets look into rolling out MACsec as the best Ethernet Security solution!
- \rightarrow Lets create a competitively priced Ethernet solution to replace classical busses!

THANK YOU FOR YOUR ATTENTION.

Dr. Lars Völker Diplom-Informatiker

Postal Address BMW AG 80788 Munich Street Address Max-Diamant-Str. 25

Phone +49-89-382-31429 Mobile +49-151-601-31429 E-Mail Lars.Voelker@bmw.de

BACKUP: NETWORK SECURITY SOLUTIONS

SECURITY ON LAYER 2 IEEE 802.1AE MACSEC

- MACsec protects on layer 2.
 - Encryption and Authentication: supported.
 - Authentication only: supported.

- Pros:

- Protects all traffic.

- Configuration: easy.
- Minimum number of keys.

– Cons:

- Difficult if some messages are not to be protected (e.g. for setup and configuration).
- Requires hardware support

SECURITY ON LAYER 3 IETF IPSEC (RFC 4301, ...)

- IPsec protects on layer 3.
 - Encapsulating Security Payload (ESP).
 - Encryption and/or Authentication.
 - Authentication Header.
 - (Transparent) Authentication.
- Pros:
 - Can protect based on IPs and Port numbers.
 - Configuration: easy-medium.
 - $-\operatorname{Sym.}$ keys per peer.
 - Easy to use hardware crypto.
- Cons:
 - No multicast, no broadcast.

IPv4/IPv6 Header	A	λH	IPv	/4/IPv6 opt.	Sec	Secured Data					
Next Hdr.	Len	Len Res.		Seq	ICV						
1B.	1B.	2B.	4B.	4B.							

SPI: Secure Parameter Index Seq: Sequence Number (~IV) Pad: Padding Pad.Len.: Length of Padding ICV: Integrity Check Value Len: Length Res: Reserved (0x00)

SECURITY ON LAYER 4 IETF TLS / IETF DTLS

- TLS runs on TCP and protects the TCP connections data.
- DTLS runs on UDP and protects data over UDP association.

- Pros:

- Well-known and used everywhere (TLS).
- Configuration: easy-medium (because per connection).
- Sym. keys per connection.
- Application specific security possible.

- Cons:

- Security of implementations still somewhat limited.
- Overhead due to many connections.
- Somewhat complicated to use hardware crypto.

SECURITY ON LAYER 7 OR CAN SECURE ON-BOARD COMMUNICATION

- SecOC is an application specific solution.

- Pros:

- Very flexible for new applications/messages.
- $-\mbox{ Can support classic busses.}$

- Cons:

- New standard.
- $-\mbox{ Can}$ be very hard to retrofit.
- No Open Source implementations.
- Key Exchange not standardized.
- Massive numbers of keys.

